Reductively Responsive Hydrogel Nanoparticles with Uniform Size, Shape, and Tunable Composition for Systemic siRNA Delivery in Vivo.

نویسندگان

  • Da Ma
  • Shaomin Tian
  • Jeremy Baryza
  • J Christopher Luft
  • Joseph M DeSimone
چکیده

To achieve the great potential of siRNA based gene therapy, safe and efficient systemic delivery in vivo is essential. Here we report reductively responsive hydrogel nanoparticles with highly uniform size and shape for systemic siRNA delivery in vivo. "Blank" hydrogel nanoparticles with high aspect ratio were prepared using continuous particle fabrication based on PRINT (particle replication in nonwetting templates). Subsequently, siRNA was conjugated to "blank" nanoparticles via a disulfide linker with a high loading ratio of up to 18 wt %, followed by surface modification to enhance transfection. This fabrication process could be easily scaled up to prepare large quantity of hydrogel nanoparticles. By controlling hydrogel composition, surface modification, and siRNA loading ratio, siRNA conjugated nanoparticles were highly tunable to achieve high transfection efficiency in vitro. FVII-siRNA conjugated nanoparticles were further stabilized with surface coating for in vivo siRNA delivery to liver hepatocytes, and successful gene silencing was demonstrated at both mRNA and protein levels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reductively responsive siRNA-conjugated hydrogel nanoparticles for gene silencing.

A critical need still remains for effective delivery of RNA interference (RNAi) therapeutics to target tissues and cells. Self-assembled lipid- and polymer-based systems have been most extensively explored for transfection with small interfering RNA (siRNA) in liver and cancer therapies. Safety and compatibility of materials implemented in delivery systems must be ensured to maximize therapeuti...

متن کامل

Nanolipoparticles-mediated MDR1 siRNA delivery: preparation, characterization and cellular uptake

Objective(s): Lipid-based nanoparticles (NLP) are PEGylated carriers composed of lipids and encapsulated nucleic acids with a diameter less than 100 nm. The presence of PEG in the NLP formulation improves the particle pharmacokinetic behavior. The purpose of this study was to prepare and characterize NLPs containing MDR1 siRNA and evaluate their cytotoxicity and cellular uptake. MDR1 siRNA coul...

متن کامل

Nanolipoparticles-mediated MDR1 siRNA delivery reduces doxorubicin resistance in breast cancer cells and silences MDR1 expression in xenograft model of human breast cancer

Objective(s): P-glycoprotein (P-gp) is an efflux protein, the overexpression of which has been associated with multidrug resistance in various cancers. Although siRNA delivery to reverse P-gp expression may be promising for sensitizing of tumor cells to cytotoxic drugs, the therapeutic use of siRNA requires effective carriers that can deliver siRNA intracellularly with minimal toxicity on targe...

متن کامل

Hydrogel-templated growth of large gold nanoparticles: synthesis of thermally responsive hydrogel-nanoparticle composites.

In this paper, we describe a unique strategy for preparing discrete composite nanoparticles consisting of a large gold core (60-150 nm in diameter) surrounded by a thermally responsive nontoxic hydrogel polymer derived from the polymerization of N-isopropylacrylamide (NIPAM) or a mixture of NIPAM and acrylic acid. We synthesize these composite nanoparticles at room temperature by inducing the g...

متن کامل

Near infrared light-responsive and injectable supramolecular hydrogels for on-demand drug delivery.

A near infrared (NIR) light-responsive supramolecular hydrogel consisting of α-cyclodextrin and poly(ethylene glycol)-modified dendrimer-encapsulated platinum nanoparticles was developed. Upon NIR irradiation, this hydrogel underwent a photothermo-sensitive degradation to release the entrapped therapeutic agents in an on-demand and dose-tunable fashion.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmaceutics

دوره 12 10  شماره 

صفحات  -

تاریخ انتشار 2015